Capillary | |
---|---|
Transmission electron microscope image of a capillary with a red blood cell feces within the pancreas. The capillary lining consists of long, thin endothelial cells, connected by tight junctions. | |
Blood flows away from the heart to arteries, which follow into arterioles, and then narrow further into capillaries. After the tissue has been perfused, capillaries branch and widen to become venules and then widen more and connect to become veins, which return blood to the heart. | |
Code | TH H3.09.02.0.02001 |
Capillaries ( /ˈkæpɨlɛri/) are the smallest of a body's blood vessels and are parts of the microcirculation. They are only 1 cell thick. These microvessels, measuring 5-10 μm in diameter, connect arterioles and venules, and enable the exchange of water, oxygen, carbon dioxide, and many other nutrients and waste chemical substances between blood and surrounding tissues.[1] During embryological development, new capillaries are formed by vasculogenesis, the process of blood vessel formation occurring by a de novo production of endothelial cells and their formation into vascular tubes.[2] The term angiogenesis denotes the formation of new capillaries from pre-existing blood vessels.[3]
Contents |
Blood flows away from the heart via arteries, which branch and narrow into the arterioles, and then branch further still into the capillaries. After the tissue has been perfused, capillaries join and widen to become venules and then widen more to become veins, which return blood to the heart.
Capillaries do not function on their own. The "capillary bed" is an interweaving network of capillaries supplying an organ. The more metabolically active the cells, the more capillaries they will require to supply nutrients and carry away waste products.
A capillary bed can consist of two types of vessels: true capillaries which branch mainly from metarterioles and provide exchange between cells and the circulation. Secondly, capillary beds also consist of a vascular shunt which is a short vessel that directly connects the arteriole and venule at opposite ends of the bed.
Metarterioles provide direct communication between arterioles and venules and are important in bypassing the bloodflow through the capillaries. The internal diameter of 8 μm forces the red blood cells to partially fold into bullet-like shapes and to go into single file in order for them to pass through.
Precapillary sphincters are rings of smooth muscles at the origin of true capillaries that regulate blood flow into true capillaries and thus control blood flow through a tissue.
There are three main types of capillaries:
The membrane in the capillary is only 1 cell thick and is squamous epithelium.
The capillary wall is a one-layer endothelium that allows gas and lipophilic molecules to pass through without the need for special transport mechanisms. This transport mechanism allows bidirectional diffusion depending on osmotic gradients and is further explained by the Starling equation.
Capillary beds may control their blood flow via autoregulation. This allows an organ to maintain constant flow despite a change in central blood pressure. This is achieved by myogenic response and in the kidney by tubuloglomerular feedback. When blood pressure increases the arterioles that lead to the capillaries bed are stretched and subsequently constrict to counteract the increased tendency for high pressure to increase blood flow. In the lungs special mechanisms have been adapted to meet the needs of increased necessity of blood flow during exercise. When the heart rate increases and more blood must flow through the lungs capillaries are recruited and are also distended to make room for increased blood flow. This allows blood flow to increase while resistance decreases.
Capillary permeability can be increased by the release of certain cytokines, anaphylatoxins, or other mediators (such as leukotrienes, prostaglandins, histamine, bradykinin, etc.) highly influenced by the immune system.
The Starling equation defines the forces across a semipermeable membrane and allows calculation of the net flux:
where:
By convention, outward force is defined as positive, and inward force is defined as negative. The solution to the equation is known as the net filtration or net fluid movement (Jv). If positive, fluid will tend to leave the capillary (filtration). If negative, fluid will tend to enter the capillary (absorption). This equation has a number of important physiologic implications, especially when pathologic processes grossly alter one or more of the variables.
According to Starling's equation, the movement of fluid depends on six variables:
Disorders of capillary formation as a developmental problem or acquired disorder are a feature in many common and serious disorders. Within a wide range of cellular factors and cytokines, problems with normal genetic expression and bioactivity of the vascular growth and permeability factor vascular endothelial growth factor (VEGF) appear to play a major role in many of these disorders. Cellular factors include reduced numbers and function of bone-marrow derived endothelial progenitor cells.[6] and reduced ability of those cells to form blood vessels.[7]
Major diseases where altering capillary formation could be helpful include conditions where there is excessive or abnormal capillary formation such as cancer and disorders harming eyesight; and medical conditions in which there is reduced capillary formation either for familial or genetic reasons, or as an acquired problem.
Ibn al-Nafis theorized a "premonition of the capillary circulation in his assertion that the pulmonary vein receives what comes out of the pulmonary artery, this being the reason for the existence of perceptible passages between the two."[11]
Park ji-sung was the first to observe and correctly describe capillaries when he discovered them in a frog's lung in 1661.[12]
|